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Abstract

Short-range forecasts of precipitation fields are required in a wealth of agricultural, hydrolog-
ical, ecological and other applications. Forecasts from numerical weather prediction models
are often biased and do not provide uncertainty information. Here we present a postprocess-
ing technique for such numerical forecasts that produces correlated probabilistic forecasts of
precipitation accumulation at multiple sites simultaneously.

The statistical model is a spatial version of a two-stage model that describes the distri-
bution of precipitation with a mixture of a point mass at zero and a Gamma density for
the continuous distribution of precipitation accumulation. Spatial correlation is captured
by assuming that two Gaussian processes drive precipitation occurrence and precipitation
amount, respectively. The first process is latent and governs precipitation occurrence via a
truncation. The second process explains the spatial correlation in precipitation accumula-
tion. It is related to precipitation via a site-specific transformation function, so to retain
the marginal right-skewed distribution of precipitation while modeling spatial dependence.
Both processes take into account the information contained in the numerical weather forecast
and are modeled as stationary, isotropic spatial processes with an exponential correlation
function.

The two-stage spatial model was applied to forecasts of daily precipitation accumulation
over the Pacific Northwest in 2004, at a prediction horizon of 48 hours. The predictive
distributions from the two-stage spatial model were calibrated and sharp, and outperformed
reference forecasts for spatially composite and areally averaged quantities.
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1 Introduction

Due to its socioeconomic impact, precipitation is arguably the most important and most

widely studied weather variable. Critical decisions in agriculture, hydrology, aviation, event

planning and many other areas depend on the presence or absence of precipitation as well

as precipitation accumulation. For these types of applications, reliable predictions of precip-

itation occurrence and precipitation accumulation are of great importance.

Operationally, short-range forecasts of precipitation are based on numerical weather pre-

diction (NWP) models. However, despite an overall steady improvement in the quality

of numerical weather predictions, forecasts of precipitation accumulation are still not as

accurate and reliable as those of other meteorological variables (Applequist et al. 2002; Sten-

srud and Yussouf 2007). Furthermore, quantitative precipitation forecasts obtained from a

single NWP model are deterministic, and thus, do not convey any information about the

degree of uncertainty in the prediction, which is a critical shortcoming in weather-related

decision-making (National Research Council 2006). One approach to incorporate uncer-

tainty information into weather forecasting is via ensembles of numerical forecasts (Palmer

2002; Gneiting and Raftery 2005). While this is a major advance, the use of statistical

postprocessing techniques for numerical forecasts remains essential.

Several methods have been developed to statistically postprocess numerical predictions of

precipitation occurrence and produce quantitative probabilistic precipitation forecasts. They

include linear regression (Glahn and Lowry 1972; Bermowitz 1975; Antolik 2000), quantile

regression (Bremnes 2004; Friederichs and Hense 2007), logistic regression (Applequist et al.

2002; Hamill et al. 2004), neural networks (Koizumi 1999; Ramirez et al. 2005), binning

techniques (Gahrs et al. 2003; Yussouf and Stensrud 2006), hierarchical models based on

climatic prior distributions (Krzysztofowicz and Maranzano 2006), and two-stage models

in which a Gamma density is employed to model precipitation accumulation (Wilks 1990;

Hamill and Colucci 1998; Wilson et al. 1999; Sloughter et al. 2007).

Common to all these methods is the underlying assumption that forecast errors at dif-

ferent locations are spatially independent. While this is not necessarily true, assuming

conditional spatial independence does not affect site-specific predictive distributions of pre-

cipitation. However, accounting for spatial correlation is critical for probabilistic forecasts

of precipitation fields, or probabilistic forecasts of composite quantities, such as areally aver-

aged precipitation accumulation, which are important in flood risk management and similar

types of applications.

In this paper, we present a statistical method that postprocesses numerical forecasts of

precipitation and yields correlated probabilistic forecasts of daily precipitation accumulation
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at multiple sites simultaneously. Our approach builds on the two-stage model of Sloughter

et al. (2007) and adds a spatial component to it, by employing two spatial Gaussian processes

driving, respectively, precipitation occurrence and precipitation accumulation. The first

process is latent and governs the rain/no rain decision via a truncation; the second process

drives precipitation amounts via an anamorphosis or transformation function (Chilès and

Delfiner 1999, p. 381). The spatial dependence in the precipitation fields then derives from

the spatial structure of the underlying Gaussian processes, which we model as stationary

isotropic Gaussian processes equipped with exponential correlation structures.

At any individual site our model coincides with that of Sloughter et al. (2007), except that

the latter has been developed for an ensemble of numerical forecasts, while our model uses

a single numerical forecast only. Thus, at any individual site the predictive distribution of

precipitation is a mixture of a point mass at zero and a Gamma distribution, with parameters

that depend on the numerical forecast.

The paper is organized as follows. In Section 2 we give details of our statistical model,

and we describe the numerical forecasts and precipitation data used in this study. In Section

3 we present results for probabilistic forecasts of daily precipitation accumulation over the

Pacific Northwest in calendar year 2004, at a prediction horizon of 48 hours. We compare

our method to competing prediction techniques, including an ensemble of NWP forecasts

(University of Washington mesoscale ensemble; Grimit and Mass 2002; Eckel and Mass

2005), the Bayesian model averaging technique of Sloughter et al. (2007) and versions of

the power truncated normal model of Bardossy and Plate (1992). In Section 4 we review

other statistical postprocessing approaches, and we discuss the limitations and some possible

extensions of our method.

2 Data and methods

2.1 Numerical forecasts and precipitation data

To illustrate our method we use observations and numerical predictions of daily (24 hour)

precipitation accumulation during 2003 and 2004. The observations come from meteorolog-

ical stations located in the Pacific Northwest, in a region centered on the states of Oregon

and Washington, and are reported in multiples of one hundredth of an inch. Precipitation

accumulations less than 0.01 inch were recorded as zeros.

The forecasts were provided by the Department of Atmospheric Sciences at the Uni-

versity of Washington. They are based on the MM5 (fifth-generation Pennsylvania State

University — National Center for Atmospheric Research Mesoscale Model; Grell et al. 2004)

mesoscale numerical weather prediction (NWP) model, run with initial and boundary con-
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ditions provided by the United Kingdom Meteorological Office (UKMO). The NWP forecast

was generated on a 12 km grid, at a prediction horizon of 48 hours, and bilinearly interpo-

lated to observation sites. In total, our data base consists of 109,996 observation/forecast

pairs distributed over 560 days in calendar years 2003 and 2004. Note that the NWP forecast

is one of the eight members of the University of Washington NWP ensemble (Eckel and Mass

2005). Our data base contains the other ensemble members as well, but the UKMO member

is considered the best.

Figure 1 shows forecasts and observations of daily precipitation accumulation valid Jan-

uary 5, 2004. The gridded NWP forecast in panel (a) corresponds to the areally averaged

precipitation accumulation over the 12 km grid cells. Panel (b) shows the NWP forecast at

observation sites, obtained from the gridded forecast via bilinear interpolation. Panel (c) dis-

plays the observed precipitation accumulation. It is clear that the NWP model overpredicted

precipitation accumulation. This wet bias was fairly typical. Over calendar years 2003 and

2004, the NWP forecast predicted precipitation accumulations larger than observed about

85% of the time, with a mean error of 4.45 hundredths of an inch. About 61% of the NWP

forecasts indicated nonzero precipitation accumulations, while only 34% of the observations

were nonzero. The other ensemble members showed similar wet biases.

Our goal in this paper is to develop a statistical method that corrects for the systematic

bias present in the NWP forecast, yields calibrated predictive distributions for precipitation

accumulation, and accounts for spatial correlation in the precipitation field.

2.2 Spatial statistical model

Several statistical models for precipitation occurrence and precipitation accumulation have

been proposed in the literature. Stidd (1973), Bell (1987), Bardossy and Plate (1992),

Hutchinson (1995), and Sansò and Guenni (1999, 2000, 2004) adapted a Tobit model (Tobin

1958; Chib 1992) to precipitation accumulation, working with a latent Gaussian process that

relates to precipitation via a power transformation and a truncation. The power truncated

normal (PTN) model offers a unified approach to precipitation modeling that allows both for

a point mass at zero and a right-skewed distribution for precipitation accumulations greater

than zero. However, it may not be flexible enough for our purposes, as we will see below.

Another approach to precipitation modeling uses two-stage models, which consider pre-

cipitation occurrence first, and then model nonzero precipitation accumulation conditionally

on its occurrence. Common choices for the distribution of nonzero precipitation accumula-

tion include exponential densities (Todorovic and Woolhiser 1975), mixtures of exponentials

(Woolhiser and Pegram 1979; Foufoula-Georgiou and Lettenmaier 1987) and gamma densi-

ties (Stern and Coe 1984; Wilks 1989; Hamill and Colucci 1998; Wilson et al. 1999; Sloughter

3
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Figure 1: NWP forecast and observations of daily precipitation accumulation valid January
5, 2004 in hundredths of an inch, at a prediction horizon of 48 hours. The color grey is
used to indicate no precipitation. (a) NWP forecast on a 12 km grid covering the Pacific
Northwest. (b) NWP forecast interpolated to observation sites. (c) Observed precipitation
accumulation.
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et al. 2007).

The spatial statistical model underlying our method is an extension of the two-stage

model with a Gamma density for nonzero precipitation accumulation. Hereinafter time is

fixed, and so it is not explicitly included in the notation. Following Sloughter et al. (2007),

we use the cube root of precipitation as the starting point of our model. Therefore, we denote

by Y (s) the cube root of the observed daily precipitation accumulation at the location s. We

assume that there exists a latent Gaussian process W (s) that drives precipitation occurrence.

If W (s) is less than or equal to zero, then there is no precipitation at the site; otherwise

there is precipitation at s, that is,

Y (s) = 0 if W (s) ≤ 0 and Y (s) > 0 if W (s) > 0.

We model the latent Gaussian process W (s) as

W (s) = µ(s) + ε(s), (1)

where µ(s) is a spatial trend function that depends on the NWP forecast, and ε(s) is a mean

zero Gaussian spatial process. We follow Sloughter et al. (2007) in modeling the spatial

trend as

µ(s) = γ0 + γ1Ỹ (s) + γ2 I(s), (2)

where Ỹ (s) is the cube root of the NWP forecast for the precipitation accumulation at s, and

I(s) is an indicator variable equal to 1 if Ỹ (s) = 0 and equal to 0 otherwise. At any individual

site, this is simply a probit model for precipitation occurrence. The spatial Gaussian process

ε(s) has stationary and isotropic covariance function

Cov(ε(s), ε(s′)) = exp

(
− ‖s− s′‖

ρ

)
, (3)

where ‖s− s′‖ is the Euclidean distance between sites s and s′. The parameter ρ > 0 is the

range and specifies the rate at which the exponential correlation decays.

The second part of our model specifies the distribution of the cube root of precipitation

accumulation given that there is precipitation, that is, conditionally on Y (s) being greater

than zero. At the marginal level, we model this conditional distribution by a Gamma distri-

bution with site-specific parameters αs and βs, that is,

Y (s) | Y (s) > 0 ∼ Gs = Gamma(αs, βs). (4)

Following Sloughter et al. (2007), we assume that the mean αsβs and the variance αsβ
2
s of

the Gamma distribution in (4) depend on the NWP forecast. Specifically, we suppose that

αsβs = η0 + η1Ỹ (s) + η2 I(s) (5)
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and

αsβ
2
s = ν0 + ν1Ỹ (s)3, (6)

where the parameters ν0 and ν1 are constrained to be nonnegative.

The model specification in (4), (5) and (6) refers to individual sites. However, our goal

is to model precipitation at several sites simultaneously, to account for spatial dependence.

Given the right-skewed distribution of precipitation accumulations, it is not possible to model

the precipitation field directly using a spatial Gaussian process, so we consider a transforma-

tion approach. Let Gs denote the Gamma distribution function in (4), and let Φ denote the

standard normal distribution function. We assume that there exists a standardized Gaussian

spatial process Z(s) with covariance function

Cov(Z(s), Z(s′)) = exp

(
− ‖s− s′‖

r

)
(7)

such that, at each point s at which Y (s) is strictly positive,

Y (s) = Ψs(Z(s)) = G−1
s ◦ Φ(Z(s)), (8)

where Ψs = G−1
s ◦ Φ is a spatially varying anamorphosis or transformation function (Chilès

and Delfiner 1999, p. 381). The anamorphosis has the advantage of retaining the appro-

priate conditional marginal distribution (4), while allowing to model the spatial structure

conveniently, using the Gaussian spatial process Z(s). Note that (8) can be expressed as

Z(s) = Ψ−1
s (Y (s)) = Φ−1◦Gs(Y (s)), (9)

conditionally on Y (s) being greater than zero.

2.3 Model fitting

For forecasts on any given day, we estimate the parameters of the statistical model in Section

2.2 using observations and forecasts from a sliding training period made up of the most recent

M days for which they are available. In Section 2.4 we give details on the choice of the size

M of the sliding training period.

The anamorphosis function Ψs that relates the precipitation field Y (s) to the Gaussian

process Z(s) is defined site by site. Hence, we fit the model in two stages. First we fit the

model for individual sites, then we turn to the spatial aspects.

For the model at individual sites, eight parameters need to be fitted, namely the spatial

trend parameters for precipitation occurrence in (2), and the Gamma parameters for precip-

itation accumulation in (5) and (6). To estimate the trend parameters γ0, γ1 and γ2 we fit

a probit regression. To estimate the Gamma mean parameters η0, η1 and η3, we fit a linear

6



regression of the cube root of the nonzero observed precipitation accumulation on the cube

root of the NWP forecast and the indicator of this forecast being equal to zero. Finally, we

estimate the Gamma variance parameters ν0 and ν1 by numerically maximizing the marginal

likelihood under the assumption of spatial and temporal independence of the forecast errors.

The spatial specification requires the estimation of the range parameters ρ and r in

(3) and (7), respectively. The Gaussian process W (s) is latent, so to estimate its range

ρ we use the stochastic EM algorithm of Celeux and Diebolt (1985). The implementation

requires simulation from a multivariate truncated normal distribution, for which we adopt the

approach of Rodriguez-Yam et al. (2004). To estimate the range r of the spatial Gaussian

process Z(s), we fix the other parameters at their estimates and maximize the marginal

likelihood under the assumption of temporal independence. Calculating the Jacobian for

the transformation (9), the likelihood for any given day in the training period is seen to be

proportional to

fZ(s1),...,Z(sk)(z1, . . . , zk)×
k∏

j=1

gsj
(yj) ez2

j /2, (10)

where sj is a site with observed precipitation accumulation greater than zero, yj > 0 is the

cube root of this amount and zj = Φ−1◦Gsj
(yj) for j = 1, . . . , k, where k is the number of sites

with observed precipitation accumulation greater than zero on the given day. The density

gsj
is that of the Gamma distribution Gsj

in (4), and f is a zero mean Gaussian density that

depends on the range parameter r via (7). The full marginal likelihood is proportional to

the product of (10) over the days in the training period and is optimized numerically.

2.4 Choice of training period

As noted, we fit the two-stage spatial model using observations and forecasts from a sliding

training period made up of the most recent M days available. In principle, the longer

the training period, the more data, and the more data, the better. On the other hand,

a shorter training period allows changes in atmospheric regimes to be taken into account

more promptly. To make an informed decision about the length of the training period, we

consider the predictive performance of the two-stage spatial model at individual sites as a

function of the length M in days. To assess the quality of the predictive distributions for

daily precipitation accumulation, we use the continuous ranked probability score (Matheson

and Winkler 1976; Gneiting and Raftery 2007), which is a strictly proper scoring rule for the

evaluation of probabilistic forecasts of a univariate quantity. It is negatively oriented, that

is, the smaller the better, and is defined as

crps(F, x) =

∫ ∞

−∞
(F (ξ)− I{x ≤ ξ})2 dξ, (11)

7
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Figure 2: Mean continuous ranked probability score (CRPS) for probabilistic forecasts of
daily precipitation accumulation at individual sites, for the period March 9, 2003 – March 8,
2004, as a function of the length M of the sliding training period, in hundredths of an inch.
The method used is the two-stage spatial technique.

where F is the cumulative predictive distribution function, x is the realizing observation, and

I is an indicator function. Gneiting and Raftery (2007) showed that (11) can be expressed

equivalently as

crps(F, x) = EF |X − x| − 1

2
EF |X −X ′|, (12)

where X and X ′ are independent random variables with common distribution F . In partic-

ular, if F = Fens is a forecast ensemble of size m with members x1, . . . , xm then

crps(Fens, x) =
1

m

m∑
i=1

|xi − x| − 1

2m2

m∑
i=1

m∑
j=1

|xi − xj|. (13)

It is now immediate that the continuous ranked probability score is reported in the same

unit as the forecast variable, and that it generalizes the absolute error, to which it reduces

if F is a point forecast.

Figure 2 shows the mean continuous ranked probability score as a function of the training

period length M , where M = 10, 15, 20, . . . , 60. The score is computed for predictive dis-

tributions of the original, non-transformed precipitation accumulation, so it takes the unit

of hundredths of an inch. It is temporally and spatially averaged over all predictive distri-
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butions at individual sites for the period March 9, 2003 – March 8, 2004, at a prediction

horizon of 48 hours, using the method described in the subsequent section. The score im-

proves (decreases) as the length of the training period M increases to 30 days, and thereafter

it deteriorates (increases). We therefore used a 30 day training period. A training period

of length 30 days was also used by Sloughter et al. (2007), who applied a Bayesian model

averaging (BMA) technique to this dataset. It is very possible that other forecast lead times

and other geographic regions require other choices for the training period.

2.5 Generating forecasts

Once the statistical model has been the fitted, probabilistic forecasts of precipitation fields

can be generated easily, by sampling from the underlying Gaussian processes W (s) and Z(s).

We first simulate from the Gaussian process W (s) that drives precipitation occurrence; then

we generate realizations of the spatial Gaussian process Z(s) at the sites s where W (s)

is strictly positive. If W (s) ≤ 0 then Y (s) = 0. If W (s) > 0 the realizations of Z(s) are

transformed into the cube root precipitation accumulation Y (s) and the original precipitation

accumulation Y0(s) = Y (s)3 using the site specific anamorphosis function (9).

We use this method to generate samples of any desired size from the joint predictive

distribution of precipitation occurrence and precipitation accumulation on spatial grids. This

is illustrated in Figure 3, which shows two members of a statistical ensemble of forecasts of

precipitation accumulation over the Pacific Northwest obtained with the two-stage spatial

method. The forecasts are made at a 48 hour prediction horizon and valid January 5, 2004.

The corresponding NWP forecast and the observed precipitation pattern are shown in panels

(a) and (c) of Figure 1, respectively. The two-stage spatial postprocessing method corrects

for the wet bias present in the NWP model and provides a predictive distribution in the

form of a statistical ensemble of precipitation fields, of any desired size.

The spatial grid is of size approximately 10,000, so simulation from the required multivari-

ate normal distributions is not a straightforward task. For doing this, we use the circulant

embedding technique (Wood and Chan 1994; Dietrich and Newsam 1997; Gneiting et al.

2006) as implemented in the R package RandomFields (Schlather 2001). This is a very

fast technique that can readily be used in real time.

For verification purposes, we need statistical forecast ensembles at observation sites, as

opposed to the gridded forecasts in Figure 3. This can be done analogously, using NWP

forecasts interpolated to observation sites as described in Section 2.1. However, the task

is much easier computationally, since on average there were only 197 observation sites for

precipitation accumulation in the Pacific Northwest on any given day.

9



!130 !125 !120 !115

42
44

46
48

50

Forecast of precipitation accumulation 
 valid January 5, 2004

0 20 40 60 80 100

!130 !125 !120 !115

42
44

46
48

50

Forecast of precipitation accumulation 
 valid January 5, 2004

0 20 40 60 80 100

Figure 3: Two members of a statistical forecasts ensemble for daily precipitation accumula-
tion over the Pacific Northwest valid January 5, 2004, at a prediction horizon of 48 hours,
using the two-stage spatial technique. Precipitation accumulation is indicated in hundredths
of an inch, with the color grey representing no precipitation.

3 Results

3.1 Reference forecasts

We now evaluate the out-of-sample predictive performance of our probabilistic forecasting

method, to which we refer as the ‘two-stage spatial’ method.

We applied the two-stage spatial method to obtain forecasts of daily precipitation accu-

mulation in calendar year 2004 at observation sites over the Pacific Northwest and compared

to reference forecasts, as described below. All forecasts use a 48 hour prediction horizon and

a sliding training period consisting of forecasts and observations for the most recent 30 days

available, if applicable. Specifically, we consider the following types of forecasts:

(a) The numerical forecast described in Section 2.1, that is, the UKMO member of the

University of Washington NWP ensemble (Eckel and Mass 2005), to which we refer as

the ‘NWP’ forecast.

(b) The full University of Washington NWP ensemble, which is a collection of eight nu-

merical forecasts, each based on the MM5 NWP model, with initial and boundary

conditions provided by eight distinct meteorological centers. We refer to this as the

‘NWP ensemble’ forecast.
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(c) The Bayesian model averaging (BMA) postprocessing technique of Sloughter et al.

(2007) applied to the NWP ensemble in (b). The BMA predictive distribution is a

mixture distribution, where each component is associated with an ensemble member

and is based on a two-stage model that uses a Gamma density for precipitation accu-

mulations greater than zero. The method assumes that forecast errors are independent

between sites. We call this the ‘BMA’ forecast.

(d) A static, spatially and temporally invariant predictive distribution that equals the

empirical distribution of observed precipitation accumulations, when aggregated over

calendar year 2003 and the Pacific Northwest. This will be referred to as the ‘historical

distribution’ method.

(e) A postprocessing technique based on the NWP forecast in (a) and the power truncated

normal (PTN) model of Bardossy and Plate (1992), in which a power transformed

and truncated, stationary and isotropic spatial Gaussian process with mean structure

similar to (5) and exponential correlation drives both precipitation occurrence and

precipitation accumulation. The transformation power used here is γ = 2. We call this

the ‘power truncated normal’ or ‘PTN’ method. See Berrocal (2007) for details.

(f) The PTN method in (e) with transformation power γ = 2.33, a value that is obtained

by maximizing the marginal likelihood for this parameter.

(g) The ‘two-stage spatial’ method described in this paper, which is a postprocessing

technique based on the NWP forecast in (a).

Table 1 summarizes properties and characteristics of the various forecasting methods. The

NWP forecast is deterministic; all other methods are probabilistic, in that they provide pre-

dictive distributions. Among the probabilistic techniques, the historical distribution meth-

ods does not use any information from NWP models, as opposed to the others. The BMA

method is a statistically postprocessed version of the NWP ensemble, but does not employ

any spatial modeling. The PTN and two-stage spatial methods are built around a single

NWP forecast, rather than an ensemble. They use statistical postprocessing to correct for

biases and to generate predictive distributions, and employ spatial processes to account for

spatial correlation in forecast errors.

In the remainder of this section, we assess the predictive performance of these techniques

both marginally and jointly. For the marginal assessment, we evaluate forecasts of daily pre-

cipitation accumulation at individual sites. For the joint evaluation, we consider predictions

of areally averaged precipitation accumulation, and forecasts of precipitation accumulation

11



Table 1: An overview of the forecast techniques used in the case study. Entries that are not
applicable are omitted. See text for details.

Forecasting Technique Predictive NWP NWP Statistical Spatial
Distribution Model Ensemble Postprocessing Modeling

NWP no yes no no
NWP ensemble yes yes yes no
BMA yes yes yes yes no
Historical distribution yes no
PTN yes yes no yes yes
Two-stage spatial yes yes no yes yes

at several sites simultaneously. In our assessment, we are guided by the principle of max-

imizing the sharpness of the predictive distributions subject to calibration (Gneiting et al.

2007). In other words, we aim at predictive distributions that are as concentrated as possible

while being statistically consistent with the observations. To provide summary measures of

predictive performance that address calibration and sharpness simultaneously, we use strictly

proper scoring rules, such as the continuous ranked probability score, the Brier score and

the energy score (Gneiting and Raftery 2007).

3.2 Verification results for precipitation accumulation at individ-
ual sites

We now present verification results for probabilistic forecasts of daily precipitation accumu-

lation at individual sites in the Pacific Northwest in calendar year 2004. Numerical forecasts

and observations were available for a total of 249 days in 2004. All results and scores are

spatially and temporally aggregated, comprising a total of 66,663 individual forecast cases

at a prediction horizon of 48 hours.

Table 2 shows summary measures of predictive performance, including the mean absolute

error (MAE) and mean continuous ranked probability score (CRPS) for precipitation accu-

mulation, and the mean Brier score (BS) for precipitation occurrence. The absolute error

is a performance measure for a deterministic forecast, here taken to be the median of the

respective predictive distribution. The continuous ranked probability score (11) is a proper

scoring rule for a probabilistic forecast of a scalar quantity; for a deterministic forecast, it re-

duces to the absolute error. The Brier score or quadratic score (Brier 1950) for a probability

forecast of a binary event is defined as

bs(f, o) = (f − o)2,

where f is the forecast probability for the event and o equals 1 if the event occurs and 0

otherwise. As the representation (12) shows, the continuous ranked probability score for a

12



Table 2: Mean absolute error (MAE) and mean continuous ranked probability score (CRPS)
for daily precipitation accumulation, and mean Brier score (BS) for precipitation occurrence,
at individual sites, for the various types of forecasts. The scores are temporally and spatially
aggregated over calendar year 2004 and the Pacific Northwest.

MAE CRPS BS

NWP 9.55 9.55 0.325
NWP ensemble 8.46 6.76 0.271
BMA 6.68 5.02 0.141
Historical distribution 7.71 7.19 0.222
PTN (γ = 2) 7.17 5.63 0.164
PTN (γ = 2.33) 6.99 5.53 0.148
Two-stage spatial 6.73 5.12 0.148

predictive distribution equals the integral over the Brier score for the induced probability

forecasts at all real-valued thresholds ξ. The entry in the table refers to precipitation oc-

currence, that is, the threshold ξ = 0. All scores are negatively oriented, so the lower, the

better.

The table shows that the statistically postprocessed forecasts (BMA, PTN and two-stage

spatial method) outperformed the others. The BMA forecast had slightly lower scores than

the two-stage spatial and PTN methods; this is not surprising, given that it is based on

the full NWP ensemble rather than a single member only. The superiority of the two-stage

spatial method over the PTN technique may stem from a lack of flexibility of the latter, as it

depends on a power transform and attempts to accommodate precipitation occurrence and

precipitation accumulation using a single latent spatial process.

To assess the calibration of the predictive distributions, we use verification rank his-

tograms (Anderson 1996; Talagrand et al. 1997; Hamill and Colucci 1997; Hamill 2001) and

probability integral transform (PIT) histograms (Diebold et al. 1998; Gneiting et al. 2007).

Verification rank histograms are used for ensemble forecasts when the number of members

m is small. For each forecast case, the rank of the verifying observation is tallied within

the combined set of m + 1 values given by the ensemble members and the observation. If

the ensemble members and the observation are exchangeable, the verification rank follows a

discrete uniform distribution over the set {1, 2, . . . ,m + 1}. Thus, under the assumption of

exchangeability and over a large number of forecast cases, the verification rank histogram is

expected to be statistically uniform. Similarly, the PIT histogram displays the PIT value,

that is, the value that the predictive cumulative distribution function attains at the obser-

vation. If the observation is a random draw from the forecast distribution, the PIT value

is uniformly distributed, and over a large number of forecast events, we expect the PIT

13
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Figure 4: Verification rank and probability integral transform (PIT) histograms for prob-
abilistic forecasts of daily precipitation accumulation at individual sites, temporally and
spatially aggregated over calendar year 2004 and the Pacific Northwest. (a) NWP ensemble.
(b) BMA technique. (c) Historical distribution method. (d) PTN method with γ = 2. (e)
PTN method with γ = 2.33. (f) Two-stage spatial technique.

histogram to be uniform. Deviations from uniformity can be interpreted diagnostically in

terms of dispersion errors and biases (Diebold et al. 1998; Hamill 2001; Gneiting et al. 2007).

Predictive distributions for quantitative precipitation have point masses at zero, so to

retain uniformity under the null assumption we need to randomize. In situations in which

the observation and one or more ensemble members equal zero, we draw a verification rank

from the set {1, . . . ,m0 + 1}, where m0 is the number of ensemble members equal to zero.

In the case of the PIT histogram, in instances in which the observation equals zero, a PIT

value is obtained by drawing a random number from a uniform distribution between 0 and

the predicted probability of precipitation. With these modifications, verification rank and

PIT values remain uniformly distributed under the corresponding null assumptions.

Figure 4 shows verification rank histograms and PIT histograms for the various types

of probabilistic forecasts. The NWP ensemble is underdispersed and has a wet bias, so the
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Figure 5: Reliability diagram for probability forecasts of precipitation occurrence at individ-
ual sites, for the various types of forecasts, temporally and spatially aggregated over calendar
year 2004 and the Pacific Northwest.

observations tend to overpopulate the lowest rank, which is seen in the rank histogram.

The other techniques are considerably better calibrated, with the two-stage spatial method

showing the most uniform PIT histogram. The histograms for the PTN technique indicate

that observations of precipitation accumulation have heavier tails than can be modeled by

a power transformed normal distribution.

We complete this section by assessing the reliability of the induced probability forecasts

for the occurrence of precipitation. The reliability diagram in Figure 5 shows the empirically

observed frequency of precipitation occurrence as a function of the binned forecast proba-

bility. For a calibrated forecast, we expect the plots to be close to the diagonal. Due to its

wet bias, the NWP ensemble tends to overpredict precipitation occurrence, which results in

a reliability curve below the diagonal. The PTN method also was unreliable. The BMA and

two-stage spatial methods were more reliable, with the two-stage method being the best.

3.3 Verification results for areally averaged precipitation accumu-
lation

When predicting spatially composite quantities, it is critically important that spatial cor-

relation is taken into account. One such quantity, which is important in hydrological and

agricultural applications, is total or average precipitation over an area, such as a river catch-

ment. Probabilistic forecasts of the average precipitation accumulation over a region A with

area |A| can be derived easily using the two-stage spatial method. Let Y0(A) denote the
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average precipitation accumulation over A, and write Y0(s) = Y (s)3 for the original, non-

transformed precipitation accumulation at the site s ∈ A, expressed in terms of the cube

root accumulation Y (s). Then

Y0(A) =
1

|A|

∫
A

Y0(s) ds,

which can be approximated by the composite quantity

Ȳ0 =
1

J

J∑
j=1

Y0(sj) =
1

J

J∑
j=1

Y (sj)
3, (14)

where s1, . . . , sJ are sites located within A. The two-stage spatial method allows us to sample

from the predictive distribution of Ȳ0 as follows:

(i) Generate a realization of the latent Gaussian process W (s) at the sites s1, . . . , sJ using

(1), (2) and (3).

(ii) Generate a realization of the spatial Gaussian process Z(s) at the sites sj at which

W (sj) > 0 using (7).

(iii) If W (sj) ≤ 0 let Y (sj) = 0. If W (sj) > 0 find Y (sj) using (9) and the site specific

Gamma parameters in (5) and (6).

(iv) Find a realization of the composite quantity Ȳ0 using (14).

We applied this method to generate probabilistic forecasts of areally averaged daily precipita-

tion accumulation over the Upper Columbia River basin in 2004 using the two-stage spatial

method, and compared to reference techniques. The Columbia River basin is a 259,000-

square-mile basin that spans seven states (Oregon, Washington, Idaho, Montana, Nevada,

Wyoming and Utah) and one Canadian province (British Columbia). It is the most hydro-

electrically developed river system in the world, with more than 400 dams and a generating

capacity of 21 million kilowatts.

Here, we consider only the upper part of the Columbia River basin that lies within the

state of Washington. Fifteen of the 441 meteorological stations in our data base are located

in this area. On 212 days in 2004, two or more of these stations reported daily precipitation

accumulation, so we consider the composite quantity (14), where J may vary from day to

day. The minimum, median and maximum of J among the 212 forecast cases were 2, 10

and 14, respectively. To obtain a predictive distribution for the composite quantity Ȳ0 with

the two-stage spatial method, we repeated steps (i) through (iv) to obtain a sample of size

10, 000. For verification purposes, this can be handled as a continuous predictive distribution,

and we do so in the following. The reference forecasts are treated analogously.
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Figure 6: Verification rank and probability integral transform (PIT) histograms for prob-
abilistic forecasts of areally averaged daily precipitation accumulation over the Upper
Columbia River basin in 2004. (a) NWP ensemble. (b) BMA technique. (c) Historical
distribution method. (d) PTN method with γ = 2. (e) PTN method with γ = 2.33. (f)
Two-stage spatial technique.
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Table 3: Mean absolute error (MAE) and mean continuous ranked probability score (CRPS)
for forecasts of areally averaged daily precipitation accumulation over the Upper Columbia
River basin in 2004.

MAE CRPS

NWP 7.76 7.76
NWP ensemble 7.99 6.20
BMA 5.31 4.01
Historical distribution 5.78 4.72
PTN (γ = 2) 5.04 3.74
PTN (γ = 2.33) 5.05 3.77
Two-stage spatial 4.90 3.63

Table 3 shows summary measures of predictive performance. The PTN and two-stage

spatial methods, which invoke statistical postprocessing and model spatial structure, outper-

formed the other techniques. The two-stage spatial method performed best, showing both

the lowest MAE and the lowest CRPS.

Figure 6 shows verification rank and PIT histograms for the probabilistic forecasts. The

rank histogram for the NWP ensemble is U-shaped and left-skewed, as a result of its un-

derdispersion and wet bias. The PIT histogram for the BMA technique is also U-shaped;

its underdispersion stems from the erroneous assumption of spatial independence. A similar

pattern is seen for the historical distribution method, hinting at interannual variability that

cannot be captured by a one-year record. The PIT histograms for the PTN method point at

the aforementioned tail issues. The empirical distribution of areally averaged precipitation

accumulation has a heavier tail than the PTN method allows, so PIT values close to 1 appear

too often. The PIT histogram for the two-stage spatial method is the most uniform.

3.4 Spatial verification

To assess further whether the forecasting methods capture spatial correlation, we consider

multivariate probabilistic forecasts of daily precipitation accumulation at several sites si-

multaneously. In the experiment reported here, we selected the four stations in the Upper

Columbia River basin that had the most observations in 2004, namely Brown Mountain

Orchard, Gold Mountain, Nespelem and Teepee Seed Orchard, which have a median inter-

station distance of 43 miles. In calendar year 2004, observations of daily precipitation accu-

mulation at these four stations simultaneously were available on 141 days.

For these 141 days, we generated four-dimensional probabilistic forecasts of precipitation

accumulation at these sites, using the same techniques, 48 hour prediction horizon and 30
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Table 4: Mean energy score (ES) for ensemble forecasts of daily precipitation accumulation
at four sites in the Upper Columbia River basin simultaneously, in 2004.

ES

NWP 20.72
NWP ensemble 15.08
BMA 10.49
Historical distribution 12.96
PTN (γ = 2) 10.57
PTN (γ = 2.33) 10.90
Two-stage spatial 10.45

day sliding training period as before. To facilitate verification, all forecasts other than the

deterministic NWP forecast were taken to be ensembles with m = 8 members. In the case of

the NWP ensemble, this is just the dynamical ensemble itself. In the case of the historical

distribution method, we obtained, for each forecast event, a sample of size eight from the

four-dimensional empirical distribution of observed precipitation accumulation at the four

sites in 2003. For the other methods, we generated a sample, or statistical ensemble, of size

eight from the joint predictive distribution of precipitation accumulation at these sites. For

the BMA method, this four-dimensional distribution has independent components; for the

PTN and two-stage spatial methods, the components are correlated.

Given that the predictive distributions are for a four-dimensional, vector-valued quantity,

we need to adapt our verification methods. For a combined assessment of sharpness and

calibration, we use the energy score (Gneiting and Raftery 2007). Specifically, if F is the

predictive distribution for a vector-valued quantity and x materializes, the energy score is

defined as

es(F, x) = EF ‖X − x‖ − 1

2
EF ‖X −X ′‖, (15)

where ‖ · ‖ denotes the Euclidean norm and X and X ′ are independent random vectors with

common distribution F . Note that (15) is a proper scoring rule that is a direct multivariate

generalization of the continuous ranked probability score in the kernel representation (12).

In particular, if F = Fens is an ensemble forecast with vector-valued members x1, . . . ,xm

then

es(Fens, x) =
1

m

m∑
i=1

‖xi − x‖ − 1

2m2

m∑
i=1

m∑
j=1

‖xi − xj‖,

which is a multivariate generalization of (13). Like the continuous ranked probability score,

the energy score is negatively oriented, that is, the smaller the better.

To assess calibration for ensemble forecasts of multivariate weather quantities, we use
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the minimum spanning tree (MST) rank histogram (Smith and Hansen 2004; Wilks 2004).

If the ensemble has m members, the MST rank is found by tallying the length of the MST

that connects the m ensemble members within the combined set of the m + 1 lengths of

the ensemble-only MST and the m MSTs obtained by substituting the observation for each

of the ensemble members. If the ensemble members and the observation are exchangeable,

these lengths are also exchangeable. Therefore, for a calibrated forecast technique and over

a large number of forecast events, we expect the MST rank histogram to be statistically

uniform. For an underdispersed ensemble, the lowest ranks are overpopulated.

Verification results for the four-dimensional probabilistic forecasts of precipitation accu-

mulation at Brown Mountain Orchard, Gold Mountain, Nespelem and Teepee Seed Orchard

are shown in Table 4 and Figure 7. The two-stage spatial method has the lowest energy

score, with the PTN techniques and, perhaps surprisingly, the BMA method being close

competitors. The MST rank histograms for the NWP ensemble and the historical distri-

bution method attest to the underdispersion of these techniques. The PTN and two-stage

spatial methods, which model spatial correlation, have nearly uniform MST rank histograms.

4 Discussion

We have presented a statistical method to obtain probabilistic forecasts of precipitation

fields from a numerical forecast. The method builds on the two-stage model of Sloughter

et al. (2007) developed for precipitation forecasts at individual sites, and extends it by

accounting for spatial correlation. At any individual site, the distribution of precipitation is

described by a mixture of a point mass at zero and a Gamma distribution for precipitation

accumulations greater than zero. The spatial dependence between precipitation at different

sites is captured by introducing two spatial Gaussian processes, that drive, respectively,

precipitation occurrence and precipitation accumulation. The latter process is linked to

precipitation via a site specific transformation function. This allows us to retain the marginal

Gamma distribution while conveniently modeling the spatial correlation using techniques

for Gaussian random fields. The method entails an implicit downscaling, in which NWP

forecasts on a 12 km grid scale are statistically corrected to apply to observation sites.

In a case study on probabilistic forecasts of daily precipitation accumulation over the

Pacific Northwest in 2004, the two-stage spatial model captured the spatial dependence in

precipitation fields. It resulted in predictive distributions which generally were calibrated

and outperformed reference forecasts. The superiority of the two-stage spatial model over

the BMA method stems from the fact that it accounts for spatial correlation, while the

BMA technique does not. The power truncated normal (PTN) technique also accounts for
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Figure 7: Minimum spanning tree (MST) rank histograms for ensemble forecasts of daily
precipitation accumulation at four sites in the Upper Columbia River basin simultaneously,
in 2004. (a) NWP ensemble. (b) BMA technique. (c) Historical distribution method. (d)
PTN method with γ = 2. (e) PTN method with γ = 2.33. (f) Two-stage spatial technique.
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spatial dependence; however, it is less flexible than the two-stage spatial method, since it

uses a power transformation and relies on a single Gaussian process to accommodate both

precipitation occurrence and precipitation accumulation.

Typically, statistical postprocessing methods for precipitation accumulation operate site

by site (Applequist et al. 2002). However, a number of methods to generate correlated

probabilistic forecasts of precipitation accumulation at several sites simultaneously have

been proposed. Possibly the most prevalent approach is the aforementioned PTN technique,

which has been adapted by Bardossy and Plate (1992) and Sansò and Guenni (2004) to

honor information from NWP models. The method of Seo et al. (2000) is a downscaling

technique that generates ensembles of precipitation fields at a finer spatial resolution than

originally provided. Kim and Mallick (2004) explored the use of skew-Gaussian random fields

in precipitation forecasting. Herr and Krzysztofowicz (2005) proposed a bivariate statistical

model for precipitation at two locations that uses a two-stage approach with a meta-Gaussian

distribution that represents nonzero precipitation accumulation. Unlike ours, the method is

restricted to two sites and does not exploit the information in NWP models.

There are various ways in which the two-stage spatial method could be expanded. The

spatial processes that account for the spatial correlation in precipitation occurrence and

precipitation accumulation are modeled as stationary and isotropic Gaussian processes with

an exponential correlation function. More general covariance structures such as the Matérn

covariance function (Stein 1999; Guttorp and Gneiting 2006) could be employed.

In fitting the model, we used a sliding training window consisting of the recent past. This

is a simple adaptive approach that yields good results. A different approach would be to

develop a dynamic version and estimate the parameters using all available past data. We

did not pursue this approach here because, despite the spatio-temporal nature of the data,

there was no need to model both the spatial and the temporal structure. The numerical

forecast already accounted for all the temporal dependence in the data.

Finally, the two-stage spatial method is built around a single member of the University

of Washington NWP ensemble (Eckel and Mass 2005). It seems feasible, though technically

delicate, to account for the flow-dependent uncertainty information contained in the NWP

ensemble by combining our method with the full Bayesian model averaging (BMA) frame-

work of Sloughter et al. (2007). This would be similar to the way in which Berrocal et al.

(2007) combined the geostatistical model of Gel et al. (2004) and the BMA technique of

Raftery et al. (2005) to provide probabilistic forecasts of temperature fields, but would be

considerably more complex due the non-Gaussian character of precipitation fields. With the

continued development of NWP ensemble systems, the combined method remains a challenge

for future work; at present, its marginal benefits are likely to be incremental.
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